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climt (Climate Modelling and Diagnostics Toolkit) is a Python based library which provides a modular and intuitive
approach to writing numerical models of the climate system. climt provides state-of-the art components and an easy-
to-use interface to allow writing research quality models without the hassle of modifying Fortran code.

The modular nature of climt allows re-use of model code, allowing users to build progressively complicated models
without having to rewrite the same code at each level of complexity.

climt uses sympl for its modelling infrastructure, making climt components and model scripts highly readable and
self-documenting.

Contents:

Contents 1

https://sympl.readthedocs.io
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2 Contents



CHAPTER 1

Introduction

climt (pronounced klimt) is an attempt to build a climate modelling infrastructure that is easy to use, easy to understand
and easy to learn.

Most climate model components are written in fortran for performance reasons. For that very reason, it is difficult to
change model configurations and behaviour easily, which is something scientists tend to do all the time during their
research. The earth-science community is converging towards Python as the language of choice for data analysis tasks,
thanks to Python’s flexibility and emphasis on clean, readable code. climt aims to use Python for climate modelling
for these very reasons – clearly documented components, self documenting model scripts, and a flexible configuration
system will make climate modelling more reproducible and make the learning curve less steep.

climt is aimed at a wide spectrum of users – from students who are curious to learn about the climate system to
researchers who want state-of-the-art components. climt aims to provide multiple levels of abstraction which will
allow the user to tradeoff ease of use vs. flexibility, depending on their particular needs and experience in modelling
and Python programming.

3
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CHAPTER 2

Installation

2.1 Stable release

You can install climt by simply typing

$ pip install climt

This is the preferred method to install climt, as it will always install the most recent stable release. On Ubuntu Linux,
you might need to prefix the above command with sudo. This command should work on Linux, Mac and Windows.
For Mac and Windows, it is recommended to use the anaconda python distribution to make installation simpler.

Note: If you are not using Anaconda, please ensure you have the libpython library installed. See the next section for
instructions to install libpython.

Since by default pip attempts to install a binary wheel, you won’t need a compiler on your system.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 Installing from source

The sources for climt can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/CliMT/climt

Or download the tarball:

$ curl -OL https://github.com/CliMT/climt/tarball/master

Once you have a copy of the source, you can install it with:

5
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$ pip install -r requirements_dev.txt
$ python setup.py install

Both commands may require the use of sudo.

2.2.1 Dependencies for source installations

climt depends on some easily installable libraries. For an installation from source, it also requires that C and fortran
compilers be installed.

On Ubuntu Linux, for example, these dependencies can be installed by:

$ sudo apt-get install gcc
$ sudo apt-get install gfortran
$ sudo apt-get install python-dev
$ sudo pip install -U cython
$ sudo pip install -U numpy

use pip3 and python3-dev if you use Python 3.

On Mac OSX, it is recommended that you use anaconda as your python distribution. This will eliminate the need to
install cython, numpy and python-dev. Once you have anaconda installed, you will need to do the following:

$ brew install gcc
$ export CC=gcc-x
$ export FC=gfortran-x

Where gcc-x,gfortran-x are the names of the C,Fortran compilers that Homebrew installs. Exporting the name
of the compiler is essential on Mac since the default compiler that ships with Mac (called gcc, but is actually a
different compiler) cannot compile OpenMP programs, like the dynamical core in climt.

6 Chapter 2. Installation
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CHAPTER 3

Quickstart

Let us start with a simple climt model which is not very useful, but helps illustrate how to use climt:

In [1]: import climt

# Create some components
In [2]: radiation = climt.GrayLongwaveRadiation()

In [3]: surface = climt.SlabSurface()

# Get a state dictionary filled with required quantities
# for the components to run
In [4]: state = climt.get_default_state([radiation, surface])

# Run components
In [5]: tendencies, diagnostics = radiation(state)

# See output
In [6]: tendencies.keys()
Out[6]: dict_keys(['air_temperature'])

In [7]: tendencies['air_temperature']
Out[7]:
<xarray.DataArray (mid_levels: 28, lat: 1, lon: 1)>
array([[[-8.65953484e-06]],

[[-8.82597967e-06]],

[[-9.10930142e-06]],

[[-9.50816216e-06]],

[[-1.00211876e-05]],

[[-1.06462877e-05]],

(continues on next page)
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(continued from previous page)

[[-1.13814120e-05]],

[[-1.22239221e-05]],

[[-1.31708319e-05]],

[[-1.42185500e-05]],

...

[[-2.69670979e-05]],

[[-2.85017885e-05]],

[[-2.99815186e-05]],

[[-3.13776165e-05]],

[[-3.26612456e-05]],

[[-3.38033767e-05]],

[[-3.47767484e-05]],

[[-3.55573827e-05]],

[[-3.61242997e-05]],

[[-3.64632192e-05]]])
Dimensions without coordinates: mid_levels, lat, lon
Attributes:

units: degK s^-1

Here, all the essential aspects of creating and running a model in climt are present:

• Import the climt package

• Create one or many components

• Create a state dictionary using get_default_state

• Run the components

• Do something with the output

Variables radiation and surface are two components that we create. All climt components take a lot of optional
arguments: However, by design, the default options (which are used if you don’t specify any arguments) are meant to
be scientifically meaningful.

The variables state, tendencies and diagnostics are dictionaries which contain quantities which act either
as inputs to components or outputs from components.

The function get_default_state(), if called only with a list of components, will provide a set of quantities
which represent a single column of the atmosphere. These default values may or may not be meaningful in your
context, so it is best to see what they are and change them according to your needs.

Note: The square brackets are required in the call to get_default_state, even if it is one component: climt.

8 Chapter 3. Quickstart
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get_default_state([radiation]) is the correct syntax.

Building more sophisticated models and running them is merely an extended version of the above simple example.
climt makes heavy use of Sympl, and knowledge of Sympl is necessary to use climt to its full capabilities. So, do go
through Sympl’s docs!

9
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CHAPTER 4

Interacting with climt

As we saw in the Quickstart section, climt has two kinds of entities for the user to interact with: model components
and model state. Here, we will take a closer look at both these elements.

4.1 Model State

The model state is a dictionary whose keys are names of quantities and values are sympl DataAr-
rays. The sympl DataArray is a thin wrapper over the xarray DataArray that makes it units aware.
To ensure model scripts are readable not just by specialists, names of quantities use the descrip-
tive CF Convention. Only in the case where the CF Convention names are really unwieldy, like
air_temperature_at_effective_cloud_top_defined_by_infrared_radiation for example,
we use more convenient names.

DataArrays are a more human-friendly way of handling numerical arrays. DataArrays label the dimensions of an array
and provide various mathematical functions which can be directly applied to arrays. sympl DataArrays in addition
allow conversion between units, a feature required to allow interoperability between components which expect inputs
in different units.

Let’s create a 3-d model state to see how useful DataArrays are:

In [1]: import climt

In [2]: import matplotlib.pyplot as plt

In [3]: import numpy as np

# Create some components
In [4]: radiation = climt.GrayLongwaveRadiation()

In [5]: convection = climt.DryConvectiveAdjustment()

We need to tell climt what the model dimensions are. This is done by the get_grid function. This function takes
three arguments which are the number of grid points in the three directions, and provides a state dictionary containing
the definition of a grid.

11
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Passing this grid state dictionary onto get_default_state makes climt aware of the dimensions required by the
model:

In [6]: grid = climt.get_grid(ny=3, nz=5)

# Get a state dictionary filled with required quantities
# for the components to run
In [7]: state = climt.get_default_state([radiation, convection], grid_state=grid)

In [8]: state['air_temperature']
Out[8]:
<xarray.DataArray 'air_temperature' (mid_levels: 5, lat: 3, lon: 1)>
array([[[290.],

[290.],
[290.]],

[[290.],
[290.],
[290.]],

[[290.],
[290.],
[290.]],

[[290.],
[290.],
[290.]],

[[290.],
[290.],
[290.]]])

Dimensions without coordinates: mid_levels, lat, lon
Attributes:

units: degK

climt does not interpret any of the dimension attributes in state quantities other than units. The values and labels of
coordinates are mainly for users and components. For instance, SimplePhysics requires that the y dimension be
called latitude. So, any model that uses SimplePhysics has to label one of the dimensions as latitude.

As you can see, air_temperature has

• a uniform value of 290

• coordinates of latitude and mid_levels

• units of degK, which is the notation used in climt (and Sympl) for degrees Kelvin.

It is also fairly easy to change units. The to_units() method can be used as below to return a DataArray with the
equivalent temperature in degrees Farenheit:

In [9]: state['air_temperature'].to_units('degF')
Out[9]:
<xarray.DataArray 'air_temperature' (mid_levels: 5, lat: 3, lon: 1)>
array([[[62.33],

[62.33],
[62.33]],

[[62.33],
[62.33],

(continues on next page)
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(continued from previous page)

[62.33]],

[[62.33],
[62.33],
[62.33]],

[[62.33],
[62.33],
[62.33]],

[[62.33],
[62.33],
[62.33]]])

Dimensions without coordinates: mid_levels, lat, lon
Attributes:

units: degF

Note: climt always names the vertical coordinate as mid_levels or interface_levels, however, the state
dictionary will contain a key corresponding to the name of the vertical coordinate specified by get_grid.

As mentioned previously, DataArrays are a user-friendly way of handling numerical or numpy arrays. The numpy
array underlying any DataArray is easily accessed using the values attribute:

In [10]: type(state['air_temperature'].values)
Out[10]: numpy.ndarray

and can also be modified easily:

In [11]: state['air_temperature'].values[:] = 291

The right hand side can also be any numpy array, as long as it has the same dimensions (or can be broadcasted to the
same dimensions) as the current numpy array.

Note: It is recommended to use the syntax ...values[:] = ... rather than ...values = ..., as the
former modifies the numpy array in-place. In either case, DataArrays check to ensure the dimensions (or shape) of the
new data matches with the current dimensions.

You can perform any of the functions supported by xarray on the model state quantities.

In [12]: state['air_temperature'].sum()
Out[12]:
<xarray.DataArray 'air_temperature' ()>
array(4365.)

You can also directly plot DataArrays:

In [13]: state['air_temperature'].plot()
Out[13]: <matplotlib.collections.QuadMesh at 0x7fd4f849fb70>

DataArrays are a very powerful way of dealing with array-oriented data, and you should read more about xarray, and
not just for using climt!

4.1. Model State 13
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4.2 Model Components

Components are representations of physical processes. You can see all available components in climt in the section
Components.

All components take some inputs from the model state, and return outputs or tendencies along with diagnostics (if
any).

Diagnostics are quantities computed while calculating outputs or tendencies. For example, a radiation component
calculates heating rates. However, in the process of calculating these heating rates, it also calculates the radiative flux
at each interface level.

# These are the tendencies returned by radiation
In [14]: radiation.tendency_properties
Out[14]: {'air_temperature': {'units': 'degK s^-1'}}

# These are the diagnostics returned by radiation
In [15]: radiation.diagnostic_properties
Out[15]:
{'downwelling_longwave_flux_in_air': {'dims': ['interface_levels', '*'],

'units': 'W m^-2',
'alias': 'lw_down'},

'upwelling_longwave_flux_in_air': {'dims': ['interface_levels', '*'],
'units': 'W m^-2',
'alias': 'lw_up'},

'longwave_heating_rate': {'dims': ['mid_levels', '*'],
'units': 'degK day^-1'}}

# These are the outputs returned by convection
In [16]: convection.output_properties
Out[16]: {'air_temperature': {'units': 'degK'}, 'specific_humidity': {'units': 'kg/kg
→˓'}}

# convection returns no diagnostics
In [17]: convection.diagnostic_properties
Out[17]: {}

No component will return both outputs and tendencies. The tendency of a quantity 𝑋 is given by 𝑑𝑋
𝑑𝑡 , and so the

units of a quantity returned as a tendency will always have per second as as suffix: i.e, if a component is returning
air_temperature as a tendency, then its units will be degK/s.

14 Chapter 4. Interacting with climt



CHAPTER 5

A Realistic Model

As mentioned before, climt includes some components which returns the a new version of the model state, and some
which return just tendencies.

Since tendencies by themselves are not useful for much other than plotting, we need to couple them with numerical
integration components to march the model forward in time. Again, we will use the grey radiation scheme as an
example.

The following script is used to obtain the temperature profile of the atmosphere if no physical process other than
radiation (specifically, grey gas radiation in this example) are present. The temperature profile obtained is called the
radiative equilibrium profile.

As before, we will create the radiation component and the model state:

In [1]: import climt

In [2]: import matplotlib.pyplot as plt

In [3]: import numpy as np

# Two new imports
In [4]: from sympl import AdamsBashforth

In [5]: from datetime import timedelta

# Create some components
In [6]: radiation = climt.GrayLongwaveRadiation()

# Get a state dictionary filled with required quantities
# for the components to run
In [7]: state = climt.get_default_state([radiation])

We have two new imports, AdamsBashforth and timedelta. The former is a numerical integrator which will
step the model forward in time, and the latter is a standard python module which will be used to represent the time
step of the model.

Now, to create the integrator and the timestep:

15

https://en.wikipedia.org/wiki/Linear_multistep_method


climt Documentation, Release 0.17.12

In [8]: model_time_step = timedelta(hours=1)

In [9]: model = AdamsBashforth([radiation])

We now have a model ready to run! The integrator will return the new model state and any diagnostics that
radiation has generated. We can then update the current model state with the new model state and continue
to step the model forward in time:

In [10]: for step in range(10):
....: diagnostics, new_state = model(state, model_time_step)
....: ''' Update state with diagnostics.
....: This updated state can be saved if necessary '''
....: state.update(diagnostics)
....: '''Update state quantities'''
....: state.update(new_state)
....: '''Update model time'''
....: state['time'] += model_time_step
....: '''See if the maximum temperature is changing'''
....: print(state['time'], ': ', state['air_temperature'].max().values)
....:

2000-01-01 01:00:00 : 289.96882567458607
2000-01-01 02:00:00 : 289.9377097152726
2000-01-01 03:00:00 : 289.9066289418279
2000-01-01 04:00:00 : 289.8755896761563
2000-01-01 05:00:00 : 289.844584776716
2000-01-01 06:00:00 : 289.81362324988896
2000-01-01 07:00:00 : 289.78269480027757
2000-01-01 08:00:00 : 289.7518063986025
2000-01-01 09:00:00 : 289.72095925683254
2000-01-01 10:00:00 : 289.6901474644026

And voila, we have a model that actually evolves over time! Many example scripts that illustrate standard model
configurations used in climate modelling are available in the github repository. These scripts include examples which
setup graphics to view the evolution of the model over time.

Note: A more user friendly API called Federation will be available in a later version of climt. However, setting
up models is easy enough even without Federation once you get used to the workflow.
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CHAPTER 6

Component Types

Deriving from Sympl, most components in climt are either TendencyComponent, DiagnosticComponent,
ImplicitTendencyComponent or Stepper.

• TendencyComponent takes the model state as input and returns tendencies and optional diagnostics. A
radiation component is a good example of such components: any radiation component returns the heating rate
of each layer of the atmosphere (in 𝑑𝑒𝑔𝐾/𝑠)

• DiagnosticComponent takes the model state as input and returns some other diagnostic quantities. An
example would be a component that takes the model state and returns the optical depth.

• Stepper takes the model state, and returns new values for some some quantities in the model state. A dynam-
ical core is a good example, which returns new values of winds, temperature and pressure.

• ImplicitTendencyComponent takes the model state and outputs tendencies (like a
TendencyComponent) but require the model timestep (like a Stepper) for various reasons, includ-
ing to ensure that a vertical CFL criterion is met.

You can read more about this schema of model components in Sympl’s documentation.
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CHAPTER 7

Configuring climt

A typical climate model allows the user the following kinds of configuration:

• Algorithmic Configuration: Changing the “tuning” parameters of the algorithms underlying various compo-
nents. For example, the kind of advection used in a dynamical core could be configured.

• Memory/Array Configuration: Deciding the grid shapes, and distribution over multiple processors, if using MPI.

• “Physical” Configuration: Choosing the physical constants that are used during the simulation. For example,
gravitational acceleration or planetary rotation rate could be varied.

• Behavioural Configuration: Allows modification of component behaviour. For example, radiative transfer com-
ponents are called only once every N (>> 1) time steps and the output is kept constant for the remaining N-1
time steps.

• Compositional Configuration: Describing the components that make up the model, the order in which compo-
nents need to be called, among other things.

Climate models can be configured in many ways, including hard coded configurations, namelists, shell environment
variables. These diverse ways of configuring a climate model make it difficult to keep track of all configurations and
changes made.

climt aims to keep all configuration in the main run script, but separated logically to ensure the script is still intuitive
to read.

7.1 Algorithmic Configuration

Configuring the algorithm used by each component is done by various keyword arguments passed to the component
while creating it. See, for example, the documentation for climt.RRTMGShortwave.
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7.2 Memory/Array Configuration

climt does not yet support MPI, so there is no API yet to handle distributed arrays. However, the shape of arrays
used by a model can be set while calling climt.get_default_state(). See, for example, the configuration of
arrays in a GCM.

7.3 Physical Configuration

climt provides an interface to set and reset constants required by various components. The constants are put into
different categories (boltzmann_constant is a ‘physical constant’ whereas planetary_rotation_rate is
a ‘planetary constant’, for example).

The constants can be reset to their default values so that climt is in a known state at the end of a simulation. In the
future, climt will provide a context manager to clean up modified constants at the end of a run.

You can read more about this functionality in General Utilities.

7.4 Interfacial Configuration

Wrappers are the preferred way of changing the inputs or outputs of a component to make it apparently work in a
different way.

• Piecewise constant output: Computationally expensive modules like radiative transfer are sometimes called only
once every few timesteps, and the same values is used for the intermediate timesteps of a model. For example a
GCM with a time step of 10 minutes might only call radiation after 1 hour of model time has elapsed. To allow
for such behaviour, sympl.UpdateFrequencyWrapper can be used. See how this can be used practically
in this example.

• TendencyComponent version: Spectral dynamical cores step the model forward in spectral space, and there-
fore, they do not play well with Stepper components that step forward the model in grid space. Typically,
this is handled by finite differencing the output of Stepper components and providing them as time tenden-
cies. Stepper components can be wrapped with sympl.TimeDifferencingWrapper which returns a
component which provides the time differenced tendencies. The time differencing is done using a first order
scheme:
𝑑𝑋
𝑑𝑡 = (𝑋𝑜𝑢𝑡 −𝑋𝑖𝑛)/𝛿𝑡.

See how this is used in the Grey GCM.

• Scaled version: Very often, we perform experiments where we want to study the sensitivity of the simulation
to a particular quantity or the effect of a certain quantity on the output (mechanism denial). This is in some
instances done by scaling the quantity or setting it to zero (which is also a scaling). To allow for this kind of
modification, sympl.ScalingWrapper can be used. This is a method available to all kinds of components
(Stepper, TendencyComponent, etc.,). See the documentation for this method in the description of the base
components in Components.

7.5 Compositional Configuration

This kind of configuration will allow the automatic building of models given certain components selected by the user.
Currently, the user has to write the script to build the model and run it. It is clear that a lot of this code is repetitive and
can be replaced by an entity (Which will be called Federation).
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Note: This functionality is currently unavailble, and will be present in a future version of climt.
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CHAPTER 8

Components

This page documents the different components available through climt.

8.1 Dynamics

GFSDynamicalCore
GFSDynamicalCore.__call__

8.2 Radiation

RRTMGLongwave([calculate_change_up_flux, . . . ]) The Rapid Radiative Transfer Model (RRTMG).
RRTMGLongwave.__call__(state) Gets tendencies and diagnostics from the passed model

state.
RRTMGShortwave([cloud_overlap_method, . . . ]) The Rapid Radiative Transfer Model (RRTMG).
RRTMGShortwave.__call__(state) Gets tendencies and diagnostics from the passed model

state.
GrayLongwaveRadiation([. . . ])
GrayLongwaveRadiation.__call__(state) Gets tendencies and diagnostics from the passed model

state.
Frierson06LongwaveOpticalDepth([. . . ])
Frierson06LongwaveOpticalDepth.
__call__(state)

Gets diagnostics from the passed model state.

Instellation(**kwargs) Calculates the zenith angle and star-planet correction
factor given orbital parameters.

Instellation.__call__(state) Gets diagnostics from the passed model state.
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8.2.1 climt.RRTMGLongwave

class climt.RRTMGLongwave(calculate_change_up_flux=False, cloud_overlap_method=None,
cloud_optical_properties=’liquid_and_ice_clouds’,
cloud_ice_properties=’ebert_curry_two’,
cloud_liquid_water_properties=’radius_dependent_absorption’,
calculate_interface_temperature=True, mcica=False, ran-
dom_number_generator=’mersenne_twister’, **kwargs)

The Rapid Radiative Transfer Model (RRTMG).

This module wraps RRTMG for longwave radiation (i.e, emission from the earth’s surface).

__init__(calculate_change_up_flux=False, cloud_overlap_method=None,
cloud_optical_properties=’liquid_and_ice_clouds’, cloud_ice_properties=’ebert_curry_two’,
cloud_liquid_water_properties=’radius_dependent_absorption’,
calculate_interface_temperature=True, mcica=False, ran-
dom_number_generator=’mersenne_twister’, **kwargs)

Parameters

• calculate_change_up_flux (bool) – calculate derivative of flux change with re-
spect to surface temperature alone. Can be used to adjust fluxes in between radiation calls
only due to change of surface temperature. Default value is False, meaning this quantity
is not calculated.

• cloud_overlap_method (string) – Choose the method to do overlap with:

– clear_only = Clear only (no clouds)

– random = Random

– maximum_random = Maximum/Random

– maximum = Maximum.

• cloud_optical_properties (string) – Choose how cloud optical properties are
calculated:

– direct_input = Both cloud fraction and cloud optical depth are input directly. Other
cloud properties (ie cloud particle size) are irrelevant.

– single_cloud_type = Cloud fraction and cloud physical properties are input, ice
and liquid clouds are treated together, cloud absorptivity is a constant value (0.060241).
Not available with McICA.

– liquid_and_ice_clouds = Cloud fraction and cloud physical properties are in-
put, ice and liquid clouds are treated separately. Cloud optical depth is calculated from
the cloud ice and water particle sizes and the mass content of cloud ice and cloud water.

• cloud_ice_properties (string) – set bounds on ice particle size. This is not
used if ‘cloud_optical_properties’ == ‘direct_input’

– ebert_curry_one = ice particle has effective radius >= 10.0 micron [Ebert and
Curry 1992]

– ebert_curry_two = ice particle has effective radius between 13.0 and 130.0 micron
[Ebert and Curry 1992]

– key_streamer_manual = ice particle has effective radius between 5.0 and 131.0
micron [Key, Streamer Ref. Manual, 1996]

– fu = ice particle has generalised effective size (dge) between 5.0 and 140.0 micron [Fu,
1996]. (dge = 1.0315 * r_ec)
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Default value is 0.

• cloud_liquid_water_properties (string) – set treatment of cloud liquid wa-
ter. This is not used if ‘cloud_optical_properties’ == ‘direct_input’.

– radius_independent_absorption = use radius independent absorption coeffi-
cient

– radius_dependent_absorption = use radius dependent absorption coefficient
(radius between 2.5 and 60 micron)

• calculate_interface_temperature (bool) – if True, the interface tempera-
ture is calculated internally using a weighted interpolation routine. If False, the quantity
called air_temperature_on_interface_levels in the input state needs to be
manually updated by user code.

• mcica (bool) –

– mcica = True: use the McICA version of the longwave component of RRTMG

– mcica = False: use the nomcica version of the longwave component of RRTMG

• random_number_generator (string) – Different methods of generating random
numbers for McICA. * kissvec * mersenne_twister

Methods

__init__([calculate_change_up_flux, . . . ])
param calculate_change_up_flux

calculate derivative of flux change
with respect to

array_call(state) Gets tendencies and diagnostics from the passed
model state.

Attributes

diagnostic_properties
input_properties
name
num_longwave_bands
num_reduced_g_intervals
rrtm_iplon
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit
uses_tracers

8.2.2 climt.RRTMGLongwave.__call__

RRTMGLongwave.__call__(state)
Gets tendencies and diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this object.

Returns
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• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and values
are the time derivative of those quantities in units/second at the time of the input state.

• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and val-
ues are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent instance.

8.2.3 climt.RRTMGShortwave

class climt.RRTMGShortwave(cloud_overlap_method=None, cloud_optical_properties=’liquid_and_ice_clouds’,
cloud_ice_properties=’ebert_curry_two’,
cloud_liquid_water_properties=’radius_dependent_absorption’, so-
lar_variability_method=0, use_solar_constant_from_fortran=False,
ignore_day_of_year=False, facular_sunspot_amplitude=None,
solar_variability_by_band=None, aerosol_type=’no_aerosol’,
mcica=False, random_number_generator=’mersenne_twister’,
**kwargs)

The Rapid Radiative Transfer Model (RRTMG).

This module wraps RRTMG for shortwave radiation (i.e, emission from the sun).

__init__(cloud_overlap_method=None, cloud_optical_properties=’liquid_and_ice_clouds’,
cloud_ice_properties=’ebert_curry_two’, cloud_liquid_water_properties=’radius_dependent_absorption’,
solar_variability_method=0, use_solar_constant_from_fortran=False,
ignore_day_of_year=False, facular_sunspot_amplitude=None, so-
lar_variability_by_band=None, aerosol_type=’no_aerosol’, mcica=False, ran-
dom_number_generator=’mersenne_twister’, **kwargs)

Parameters

• cloud_overlap_method (int) – Choose the method to do overlap with:

– ’clear_only’ = Clear only (no clouds)

– ’random’ = Random

– ’maximum_random’ = Maximum/Random

– ’maximum’ = Maximum.

• cloud_optical_properties (string) – Choose how cloud optical properties are
calculated:

– direct_input = Cloud fraction, cloud optical depth, single scattering albedo, cloud
asymmetry parameter and cloud forward scattering fraction are input. Cloud forward
scattering fraction is used to scale the optical depth, single scattering albedo and asym-
metry parameter. The latter three parameters are then used in the radiative transfer
calculations. Other cloud properties (ie cloud particle size) are irrelevant.

– single_cloud_type = Cloud fraction and cloud physical properties are input, ice
and liquid clouds are treated together, cloud absorptivity is a constant value (0.060241).
Not available with McICA.

– liquid_and_ice_clouds = Cloud fraction and cloud physical properties are in-
put, ice and liquid clouds are treated separately. Cloud optical depth, single scattering
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albedo and cloud asymmetry parameter are calculated from the cloud ice and water
particle sizes and the mass content of cloud ice and cloud water.

• cloud_ice_properties (string) – set bounds on ice particle size. This is not
used if ‘cloud_optical_properties’ == ‘direct_input’.

– ebert_curry_one = ice particle has effective radius >= 10.0 micron [Ebert and
Curry 1992] Not available with McICA.

– ebert_curry_two = ice particle has effective radius between 13.0 and 130.0 micron
[Ebert and Curry 1992]

– key_streamer_manual = ice particle has effective radius between 5.0 and 131.0
micron [Key, Streamer Ref. Manual, 1996]

– fu = ice particle has generalised effective size (dge) between 5.0 and 140.0 micron [Fu,
1996]. (dge = 1.0315 * r_ec)

Default value is 0.

• cloud_liquid_water_properties (string) – set treatment of cloud liquid wa-
ter. This is not used if ‘cloud_optical_properties’ == ‘direct_input’.

– radius_independent_absorption = use radius independent absorption coeffi-
cient Not available with McICA.

– radius_dependent_absorption = use radius dependent absorption coefficient
(radius between 2.5 and 60 micron)

• solar_variability_method (int) – set the solar variability model used by
RRTMG.

– solar_variability_method = -1:

* If use_solar_constant_from_fortran = True: No solar variability and
no solar cycle with a solar constant of 1368.22 𝑊𝑚−2.

* If use_solar_constant_from_fortran = False: Solar variability de-
fined by setting non-zero scale factors in solar_variability_by_band.

– solar_variability_method = 0:

* If use_solar_constant_from_fortran = True: No solar variability and
no solar cycle with a solar constant of 1360.85 𝑊𝑚−2, with facular and sunspot
effects fixed to the mean of solar cycles 13-24.

* If use_solar_constant_from_fortran = False: No solar variability
and no solar cycle.

– solar_variability_method = 1: Solar variability using the NRLSSI2 solar model
with solar cycle contribution determined by solar_cycle_fraction in the
model state, and facular and sunspot adjustment scale factors specified in
facular_sunspot_amplitude.

– solar_variability_method = 2: Solar variability using the NRLSSI2 solar model using
solar cycle determined by direct specification of Mg (facular) and SB (sunspot) indices
provided in facular_sunspot_amplitude. solar_constant is ignored.

– solar_variability_method = 3:

– If use_internal_solar_constant = True: No solar variability and no solar
cycle with a solar constant of 1360.85 𝑊𝑚−2.
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– If use_internal_solar_constant = False: scale factors in
solar_variability_by_band.

• use_solar_constant_from_fortran (bool) – If False, the solar constant is
taken from the constants library. The default value is False.

• ignore_day_of_year (bool) – If True, the solar output does not vary by day of
year (i.e, higher close to the solstices and lesser close to the equinoxes). Default value is
False.

• facular_sunspot_amplitude (array of dimension 2) – Facular and
Sunspot amplitude variability parameters, described previously.

• solar_variability_by_band (array of dimension 14 = number of
spectral bands) – scale factors for solar variability in all spectral bands.

• aerosol_type (string) – Type of aerosol inputs to RRTMG.

– no_aerosol: No Aerosol.

– ecmwf: ECMWF method. Requires aerosol optical depth at 55 micron as the state
quantity aerosol_optical_depth_at_55_micron.

– all_aerosol_properties: Input all aerosol optical properties.

• mcica (bool) –

– mcica = True: use the McICA version for the shortwave component of RRTMG

– mcica = False: use the nomcica version for the shortwave component of RRTMG

• random_number_generator (string) – Different methods of generating random
numbers for McICA. * kissvec * mersenne_twister

Methods

__init__([cloud_overlap_method, . . . ])
param cloud_overlap_method

Choose the method to do overlap
with:

array_call(state) Get heating tendencies and shortwave fluxes.

Attributes

diagnostic_properties
input_properties
name
num_ecmwf_aerosols
num_reduced_g_intervals
num_shortwave_bands
rrtm_iplon
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit
uses_tracers
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8.2.4 climt.RRTMGShortwave.__call__

RRTMGShortwave.__call__(state)
Gets tendencies and diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns

• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and
values are the time derivative of those quantities in units/second at the time of the input
state.

• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.2.5 climt.GrayLongwaveRadiation

class climt.GrayLongwaveRadiation(tendencies_in_diagnostics=False, name=None)

__init__(tendencies_in_diagnostics=False, name=None)
Initializes the Stepper object.

Parameters

• tendencies_in_diagnostics (bool, optional) – A boolean indicating
whether this object will put tendencies of quantities in its diagnostic output.

• name (string, optional) – A label to be used for this object, for example as
would be used for Y in the name “X_tendency_from_Y”. By default the class name
in lowercase is used.

Methods

__init__([tendencies_in_diagnostics, name]) Initializes the Stepper object.
array_call(state) Gets tendencies and diagnostics from the passed

model state.

Attributes

diagnostic_properties
input_properties
name
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit

Continued on next page
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Table 8 – continued from previous page
uses_tracers

8.2.6 climt.GrayLongwaveRadiation.__call__

GrayLongwaveRadiation.__call__(state)
Gets tendencies and diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns

• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and
values are the time derivative of those quantities in units/second at the time of the input
state.

• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.2.7 climt.Frierson06LongwaveOpticalDepth

class climt.Frierson06LongwaveOpticalDepth(linear_optical_depth_parameter=0.1,
longwave_optical_depth_at_equator=6,
longwave_optical_depth_at_poles=1.5,
**kwargs)

__init__(linear_optical_depth_parameter=0.1, longwave_optical_depth_at_equator=6, long-
wave_optical_depth_at_poles=1.5, **kwargs)

Parameters

• linear_optical_depth_parameter (float, optional) – The constant
𝑓𝑙 which determines how much of the variation of 𝜏 with pressure is linear rather than
quartic. 𝜏 = 𝜏0[𝑓𝑙

𝑝
𝑝𝑠

+ (1− 𝑓𝑙)(
𝑝
𝑝𝑠
)4] Default is 0.1 as in [Frierson et al., 2006].

• longwave_optical_depth_at_equator (float, optional) – The
value of 𝜏0 at the equator. Default is 6 as in [Frierson et al., 2006].

• longwave_optical_depth_at_poles (float, optional) – The value
of 𝜏0 at the poles. Default is 1.5 as in [Frierson et al., 2006].

Methods

__init__([linear_optical_depth_parameter, . . . ])
param linear_optical_depth_parameter

The constant 𝑓𝑙 which

array_call(state) Gets diagnostics from the passed model state.
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Attributes

diagnostic_properties
input_properties

8.2.8 climt.Frierson06LongwaveOpticalDepth.__call__

Frierson06LongwaveOpticalDepth.__call__(state)
Gets diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns diagnostics – A dictionary whose keys are strings indicating state quantities and values
are the value of those quantities at the time of the input state.

Return type dict

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.2.9 climt.Instellation

class climt.Instellation(**kwargs)
Calculates the zenith angle and star-planet correction factor given orbital parameters. Currently useful only for
Earth-sun system.

__init__(**kwargs)
Initializes the Stepper object.

Methods

__init__(**kwargs) Initializes the Stepper object.
array_call(state) Calculate zenith angle.

Attributes

diagnostic_properties
input_properties

8.2.10 climt.Instellation.__call__

Instellation.__call__(state)
Gets diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns diagnostics – A dictionary whose keys are strings indicating state quantities and values
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are the value of those quantities at the time of the input state.

Return type dict

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.3 Convection

EmanuelConvection([. . . ]) The Emanuel convection scheme from ‘[Emanuel and
Zivkovic-Rothman]‘_

EmanuelConvection.__call__(state, timestep) Gets tendencies and diagnostics from the passed model
state.

DryConvectiveAdjustment([. . . ]) A conservative scheme to keep the temperature profile
close to the dry adiabat if it is super-adiabatic.

DryConvectiveAdjustment.__call__(state,
timestep)

Gets diagnostics from the current model state and steps
the state forward in time according to the timestep.

8.3.1 climt.EmanuelConvection

class climt.EmanuelConvection(minimum_convecting_layer=1, autocon-
version_water_content_threshold=0.0011,
autoconversion_temperature_threshold=-
55, entrainment_mixing_coefficient=1.5,
downdraft_area_fraction=0.05, precipita-
tion_fraction_outside_cloud=0.12, speed_water_droplets=50.0,
speed_snow=5.5, rain_evaporation_coefficient=1.0,
snow_evaporation_coefficient=0.8, convec-
tive_momentum_transfer_coefficient=0.7, down-
draft_surface_velocity_coefficient=10.0, convec-
tion_bouyancy_threshold=0.9, mass_flux_relaxation_rate=0.1,
mass_flux_damping_rate=0.1, refer-
ence_mass_flux_timescale=300.0, **kwargs)

The Emanuel convection scheme from [Emanuel and Zivkovic-Rothman]

__init__(minimum_convecting_layer=1, autoconversion_water_content_threshold=0.0011,
autoconversion_temperature_threshold=-55, entrainment_mixing_coefficient=1.5,
downdraft_area_fraction=0.05, precipitation_fraction_outside_cloud=0.12,
speed_water_droplets=50.0, speed_snow=5.5, rain_evaporation_coefficient=1.0,
snow_evaporation_coefficient=0.8, convective_momentum_transfer_coefficient=0.7,
downdraft_surface_velocity_coefficient=10.0, convection_bouyancy_threshold=0.9,
mass_flux_relaxation_rate=0.1, mass_flux_damping_rate=0.1, refer-
ence_mass_flux_timescale=300.0, **kwargs)

Parameters

• minimum_convecting_layer (int, optional) – The least model level
from which convection can be initiated. Normally set to 1 if using bulk PBL schemes.
Else, it should be set to the first model level at which the temperature is defined.

• autoconversion_water_content_threshold (float, optional) –
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The amount of water vapour in 𝑘𝑔/𝑘𝑔 above which condensation occurs in warm
(above freezing point of water) clouds. This value linearly reduces to zero between
the freezing point and the autoconversion_temperature_threshold.

• autoconversion_temperature_threshold (float, optional) – The
temperature in ∘𝐶 below which all water vapour is converted to rain/snow.

• entrainment_mixing_coefficient (float, optional) – The coeffi-
cient of mixing for entrainment of environmental air into the cloud.

• downdraft_area_fraction (float, optional) – The fractional area cov-
ered by unsaturated downdrafts.

• precipitation_fraction_outside_cloud (float, optional) – The
fraction of precipitation falling outside the cloud.

• speed_water_droplets (float, optional) – The speed of descent of wa-
ter droplets in 𝑃𝑎/𝑠.

• speed_snow (float, optional) – The speed of descent of snow in 𝑃𝑎/𝑠.

• rain_evaporation_coefficient (float, optional) – Coefficient gov-
erning the rate of evaporation of rain.

• snow_evaporation_coefficient (float, optional) – Coefficient gov-
erning the rate of evaporation of snow.

• convective_momentum_transfer_coefficient (float, optional)
– Coefficient between 0 and 1 governing momentum transport by clouds. A value of
1 shuts off momentum transport.

• downdraft_surface_velocity_coefficient (float, optional) –
Coefficient mulitplying the downdraft mass flux to calculate the downdraft velocity
scale.

• convection_bouyancy_threshold (float, optional) – The maximum
negative temperature perturbation in 𝑑𝑒𝑔𝐾 a parcel can have below the temperature
at its level of free convection. If difference is greater, and previous cloud base mass
flux is zero, there is no convection.

• mass_flux_relaxation_rate (float, optional) – Coefficient govern-
ing the rate of relaxation to subcloud-layer quasi-equilibrium.

• mass_flux_damping_rate (float, optional) – Coefficient which damps
the currently calculated mass flux towards the value from the previous time step.

• reference_mass_flux_timescale (float, optional) –
Timescale used to calculate the actual damping coefficient along with
mass_flux_damping_rate and the current time step.

Methods

__init__([minimum_convecting_layer, . . . ])
param minimum_convecting_layer

The least model level from which
convection can be initiated.
Normally set

Continued on next page
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Table 14 – continued from previous page
array_call(raw_state, timestep) Get convective heating and moistening.

Attributes

diagnostic_properties
input_properties
name
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit
uses_tracers

8.3.2 climt.EmanuelConvection.__call__

EmanuelConvection.__call__(state, timestep)
Gets tendencies and diagnostics from the passed model state.

Parameters

• state (dict) – A model state dictionary satisfying the input_properties of this object.

• timestep (timedelta) – The time over which the model is being stepped.

Returns

• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and
values are the time derivative of those quantities in units/second at the time of the input
state.

• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.3.3 climt.DryConvectiveAdjustment

class climt.DryConvectiveAdjustment(tendencies_in_diagnostics=False, name=None)
A conservative scheme to keep the temperature profile close to the dry adiabat if it is super-adiabatic.

__init__(tendencies_in_diagnostics=False, name=None)
Initializes the Stepper object.

Parameters

• tendencies_in_diagnostics (bool, optional) – A boolean indicating
whether this object will put tendencies of quantities in its diagnostic output based on
first order time differencing of output values.

• name (string, optional) – A label to be used for this object, for example as
would be used for Y in the name “X_tendency_from_Y”. By default the class name
in lowercase is used.
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Methods

__init__([tendencies_in_diagnostics, name]) Initializes the Stepper object.
array_call(state, time_step) Gets diagnostics from the current model state and

steps the state forward in time according to the
timestep.

gas_constant(q) Calculate gas constant based on amount of q
heat_capacity(q) Calculate heat capacity based on amount of q

Attributes

diagnostic_properties
input_properties
output_properties
tendencies_in_diagnostics
time_unit_name
time_unit_timedelta
tracer_dims
uses_tracers

8.3.4 climt.DryConvectiveAdjustment.__call__

DryConvectiveAdjustment.__call__(state, timestep)
Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Parameters

• state (dict) – A model state dictionary satisfying the input_properties of this object.

• timestep (timedelta) – The amount of time to step forward.

Returns

• diagnostics (dict) – Diagnostics from the timestep of the input state.

• new_state (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the timestep after input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the Stepper instance for other
reasons.

8.4 Surface Processes

SimplePhysics([simulate_cyclone, . . . ]) Interface to the simple physics package.
SimplePhysics.__call__(state, timestep) Gets diagnostics from the current model state and steps

the state forward in time according to the timestep.
SlabSurface([tendencies_in_diagnostics, name]) Calculate the surface energy balance.

Continued on next page
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Table 18 – continued from previous page
SlabSurface.__call__(state) Gets tendencies and diagnostics from the passed model

state.
BucketHydrology([soil_moisture_max, . . . ]) Manages surface energy and moisture balance This

component assumes that the surface is a slab with some
heat capacity and moisture holding capacity.

BucketHydrology.__call__(state, timestep) Gets diagnostics from the current model state and steps
the state forward in time according to the timestep.

8.4.1 climt.SimplePhysics

class climt.SimplePhysics(simulate_cyclone=False, large_scale_condensation=True,
boundary_layer=True, surface_fluxes=True,
use_external_surface_temperature=True,
use_external_surface_specific_humidity=False,
top_of_boundary_layer=85000.0, bound-
ary_layer_influence_height=20000.0, drag_coefficient_heat_fluxes=0.0011,
base_momentum_drag_coefficient=0.0007,
wind_dependent_momentum_drag_coefficient=6.5e-05, maxi-
mum_momentum_drag_coefficient=0.002, **kwargs)

Interface to the simple physics package.

Reed and Jablonowski 2012: title = {Idealized tropical cyclone simulations of intermediate complexity: a test
case for {AGCMs}} journal = {Journal of Advances in Modeling Earth Systems}

__init__(simulate_cyclone=False, large_scale_condensation=True, bound-
ary_layer=True, surface_fluxes=True, use_external_surface_temperature=True,
use_external_surface_specific_humidity=False, top_of_boundary_layer=85000.0,
boundary_layer_influence_height=20000.0, drag_coefficient_heat_fluxes=0.0011,
base_momentum_drag_coefficient=0.0007, wind_dependent_momentum_drag_coefficient=6.5e-
05, maximum_momentum_drag_coefficient=0.002, **kwargs)

Parameters

• simulate_cyclone (bool) – Option indicating whether the package must simu-
late a tropical cyclone. This was the original test case this physics package was used
for. Default value is False.

• large_scale_condensation (bool) – Option indicating whether the package
must add moisture and heating tendencies due to large scale condensation. Default
value is True.

• boundary_layer (bool) – Option indicating whether the package must simulate
a simple boundary layer. It is recommended that this option remain True unless
another boundary layer component is being used. Default value is True.

• surface_fluxes (bool) – Option indicating whether the package must calculate
surface fluxes. It is recommended that this option remain True unless the fluxes
are being calculated by another component. Default value is True.

• use_external_surface_temperature (bool) – Option indicating whether
the package must use surface temperature available in the model state. If False, an
internally generated surface temperature is used. Default value is True.

• top_of_boundary_layer (float) – The nominal top of the boundary layer in
𝑃𝑎.

• boundary_layer_influence_height (float) – The decay of the influ-
ence of the boundary layer above top_of_boundary_layer in 𝑃𝑎. The in-
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fluence reduces to 1/𝑒 times the boundary layer value at a pressure given by
top_of_boundary_layer+boundary_layer_influence_height.

• drag_coefficient_heat_fluxes (float) – The wind speed independent
drag coefficient for latent and sensible heat fluxes.

• base_momentum_drag_coefficient (float) – The minimum drag coeffi-
cient for winds.

• wind_dependent_momentum_drag_coefficient (float) – The part
of the momentum drag coefficient that depends on the surface wind speed. The
total drag coefficient is given by base_momentum_drag_coefficient
+ wind_dependent_momentum_drag_coefficient*u_base, where
u_base is the surface wind speed.

• maximum_momentum_drag_coefficient (float) – This drag coefficient is
used for surface wind speeds exceeding 20𝑚/𝑠.

Methods

__init__([simulate_cyclone, . . . ])
param simulate_cyclone Option indi-

cating whether the package must

array_call(state, timestep) Calculate surface and boundary layer tendencies.

Attributes

diagnostic_properties
input_properties
output_properties
tendencies_in_diagnostics
time_unit_name
time_unit_timedelta
tracer_dims
uses_tracers

8.4.2 climt.SimplePhysics.__call__

SimplePhysics.__call__(state, timestep)
Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Parameters

• state (dict) – A model state dictionary satisfying the input_properties of this object.

• timestep (timedelta) – The amount of time to step forward.

Returns

• diagnostics (dict) – Diagnostics from the timestep of the input state.

• new_state (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the timestep after input state.

Raises
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• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the Stepper instance for other
reasons.

8.4.3 climt.SlabSurface

class climt.SlabSurface(tendencies_in_diagnostics=False, name=None)
Calculate the surface energy balance.

This component assumes the surface is a slab of possibly varying heat capacity, and calculates the surface
temperature.

__init__(tendencies_in_diagnostics=False, name=None)
Initializes the Stepper object.

Parameters

• tendencies_in_diagnostics (bool, optional) – A boolean indicating
whether this object will put tendencies of quantities in its diagnostic output.

• name (string, optional) – A label to be used for this object, for example as
would be used for Y in the name “X_tendency_from_Y”. By default the class name
in lowercase is used.

Methods

__init__([tendencies_in_diagnostics, name]) Initializes the Stepper object.
array_call(raw_state) Gets tendencies and diagnostics from the passed

model state.

Attributes

diagnostic_properties
input_properties
name
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit
uses_tracers

8.4.4 climt.SlabSurface.__call__

SlabSurface.__call__(state)
Gets tendencies and diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns

• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and
values are the time derivative of those quantities in units/second at the time of the input
state.
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• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.4.5 climt.BucketHydrology

class climt.BucketHydrology(soil_moisture_max=0.15, beta_parameter=0.75, spe-
cific_latent_heat_of_water=2260000, bulk_coefficient=0.0011,
**kwargs)

Manages surface energy and moisture balance This component assumes that the surface is a slab with some heat
capacity and moisture holding capacity. Calculates the sensible and latent heat flux, takes precipitation values
as input.

__init__(soil_moisture_max=0.15, beta_parameter=0.75, specific_latent_heat_of_water=2260000,
bulk_coefficient=0.0011, **kwargs)

Args: soil_moisture_max:

The maximum moisture that can be held by the surface_temperature

beta_parameter: A constant value that is used in the beta_factor calculation.

bulk_coefficient: The bulk transfer coefficient that is used to calculate maximum evaporation rate and
sensible heat flux

Methods

__init__([soil_moisture_max, . . . ]) Args: soil_moisture_max: The maximum mois-
ture that can be held by the surface_temperature
beta_parameter: A constant value that is used in the
beta_factor calculation.

array_call(state, timestep) Calculates sensible and latent heat flux and returns
surface temperature and soil moisture after timestep.

Attributes

diagnostic_properties
input_properties
output_properties
tendencies_in_diagnostics
time_unit_name
time_unit_timedelta
tracer_dims
uses_tracers
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8.4.6 climt.BucketHydrology.__call__

BucketHydrology.__call__(state, timestep)
Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Parameters

• state (dict) – A model state dictionary satisfying the input_properties of this object.

• timestep (timedelta) – The amount of time to step forward.

Returns

• diagnostics (dict) – Diagnostics from the timestep of the input state.

• new_state (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the timestep after input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the Stepper instance for other
reasons.

8.5 Ice and Snow

IceSheet([maximum_snow_ice_height]) 1-d snow-ice energy balance model.
IceSheet.__call__(state, timestep) Gets diagnostics from the current model state and steps

the state forward in time according to the timestep.

8.5.1 climt.IceSheet

class climt.IceSheet(maximum_snow_ice_height=10, **kwargs)
1-d snow-ice energy balance model.

__init__(maximum_snow_ice_height=10, **kwargs)

Parameters

• maximum_snow_ice_height (float) – The maximum combined height of
snow and ice handled by the model in 𝑚.

• levels (int) – The number of levels on which temperature must be output.

Methods

__init__([maximum_snow_ice_height])
param maximum_snow_ice_height

The maximum combined height
of snow and ice handled by the
model in 𝑚.

Continued on next page
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Table 26 – continued from previous page
array_call(raw_state, timestep) Gets diagnostics from the current model state and

steps the state forward in time according to the
timestep.

calculate_new_ice_temperature(rho,
. . . [, . . . ])

Attributes

diagnostic_properties
input_properties
output_properties
tendencies_in_diagnostics
time_unit_name
time_unit_timedelta
tracer_dims
uses_tracers

8.5.2 climt.IceSheet.__call__

IceSheet.__call__(state, timestep)
Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Parameters

• state (dict) – A model state dictionary satisfying the input_properties of this object.

• timestep (timedelta) – The amount of time to step forward.

Returns

• diagnostics (dict) – Diagnostics from the timestep of the input state.

• new_state (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the timestep after input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the Stepper instance for other
reasons.

8.6 Test Cases

HeldSuarez([sigma_boundary_layer_top, k_f, . . . ]) Provide the Held-Suarez forcing.
HeldSuarez.__call__(state) Gets tendencies and diagnostics from the passed model

state.
DcmipInitialConditions([condition_type, . . . ]) Climt interface to the DCMIP initial conditions.
DcmipInitialConditions.__call__(state) Gets diagnostics from the passed model state.
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8.6.1 climt.HeldSuarez

class climt.HeldSuarez(sigma_boundary_layer_top=0.7, k_f=1.1574074074074073e-05,
k_a=2.8935185185185185e-07, k_s=2.8935185185185184e-06, equa-
tor_pole_temperature_difference=60, delta_theta_z=10, **kwargs)

Provide the Held-Suarez forcing.

Produces the forcings proposed by Held and Suarez for the intercomparison of dynamical cores of AGCMs.
Relaxes the temperature field to a zonally symmetric equilibrium state, and uses Rayleigh damping of low-level
winds to represent boundary-layer friction. Details can be found in [Held and Suarez (1994)].

References

Held, I. and M. Suarez, 1994: A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric
General Circulation Models. Bull. Amer. Meteor. Soc., 75, 1825-1830, doi: 10.1175/1520-
0477(1994)075<1825:APFTIO>2.0.CO;2.

__init__(sigma_boundary_layer_top=0.7, k_f=1.1574074074074073e-05,
k_a=2.8935185185185185e-07, k_s=2.8935185185185184e-06, equa-
tor_pole_temperature_difference=60, delta_theta_z=10, **kwargs)

Parameters

• sigma_boundary_layer_top (float) – The height of the boundary layer top
in sigma coordinates. Corresponds to $sigma_b$ in Held and Suarez, 1994. Default
is 0.7.

• k_f (float) – Velocity damping coefficient at the surface in 𝑠−1. Default is
1 𝑑𝑎𝑦−1.

• k_a (float) – Parameter used in defining vertical profile of the temperature damp-
ing in 𝑠−1, as outlined in Held and Suarez, 1994. Default is 1/40 𝑑𝑎𝑦−1.

• k_s (float) – Parameter used in defining vertical profile of the temperature damp-
ing in 𝑠−1, as outlined in Held and Suarez, 1994. Default is 1/4 𝑑𝑎𝑦−1.

• equator_pole_temperature_difference (float) – Equator to pole tem-
perature difference, in K. Default is 60K.

• delta_theta_z (float) – Parameter used in defining the equilibrium tempera-
ture profile as outlined in Held and Suarez, 1994, in K. Default is 10K.

Methods

__init__([sigma_boundary_layer_top, k_f, . . . ])
param sigma_boundary_layer_top

The height of the boundary

array_call(raw_state) Get the Held-Suarez forcing tendencies

Attributes

diagnostic_properties
input_properties

Continued on next page
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Table 30 – continued from previous page
name
tendencies_in_diagnostics
tendency_properties
tracer_tendency_time_unit
uses_tracers

8.6.2 climt.HeldSuarez.__call__

HeldSuarez.__call__(state)
Gets tendencies and diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns

• tendencies (dict) – A dictionary whose keys are strings indicating state quantities and
values are the time derivative of those quantities in units/second at the time of the input
state.

• diagnostics (dict) – A dictionary whose keys are strings indicating state quantities and
values are the value of those quantities at the time of the input state.

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.

8.6.3 climt.DcmipInitialConditions

class climt.DcmipInitialConditions(condition_type=’baroclinic_wave’,
add_perturbation=True, moist=False, **kwargs)

Climt interface to the DCMIP initial conditions. Currently only provides interfaces to tests 4 and 5.

__init__(condition_type=’baroclinic_wave’, add_perturbation=True, moist=False, **kwargs)
Initialize the DCMIP module.

Parameters

• condition_type (str, optional) – The type of initial conditions desired.
Can be one of 'baroclinic_wave' or 'tropical_cyclone'.

• add_perturbation (bool, optional) – Whether a perturbation must be
added. Only applies to the baroclinic wave test.

Methods

__init__([condition_type, add_perturbation,
. . . ])

Initialize the DCMIP module.

array_call(state) Gets diagnostics from the passed model state.
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Attributes

diagnostic_properties
input_properties

8.6.4 climt.DcmipInitialConditions.__call__

DcmipInitialConditions.__call__(state)
Gets diagnostics from the passed model state.

Parameters state (dict) – A model state dictionary satisfying the input_properties of this ob-
ject.

Returns diagnostics – A dictionary whose keys are strings indicating state quantities and values
are the value of those quantities at the time of the input state.

Return type dict

Raises

• KeyError – If a required quantity is missing from the state.

• InvalidStateError – If state is not a valid input for the TendencyComponent in-
stance.
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CHAPTER 9

Component Manual

9.1 RRTMG - The Rapid Radiative Transfer Model

9.1.1 Introduction

Treatment of Clouds

There are two methods in RRTMG, which handle clouds in different ways.

McICA

McICA allows us to have fractional cloud areas, by randomly assigning some wavelengths to see cloud and other
wavelengths to see no cloud. For example if we have a cloud fraction of 40%, then 40% of the wavelengths see cloud,
while the other 60% do not.

nomcica

With nomcica, all of the wavelengths see some cloud. Using this method for the shortwave we can only have cloud area
fractions of zero and one, representing clear and completely overcast skies. On the other hand, if we are calculating
longwave fluxes, we can also use fractional cloud area fractions.

9.1.2 Calculation of radiative fluxes

Longwave

Two properties are needed to calculate the longwave radiative fluxes; the absorptivity (or transmittance which equals
one minus the absorptivity) and the emissivity. Values of these two properties are needed for each model layer, for
both cloudy and clear sky regimes and for each waveband.
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radld = radld * (1 - atrans(lev)) * (1 - efclfrac(lev,ib)) + &
gassrc * (1 - cldfrac(lev)) + bbdtot * atot(lev) * cldfrac(lev)

The radiative fluxes at each layer(radld on the left hand side of the equations) are calculated from the radiative fluxes
from the layer above (radld on the right hand side of the equation) and the properties of the layer. The first term in the
equation above is fraction of radiative flux from the layer above that is transmitted through the layer. atrans(lev)
is the gaseous absorptivity and efclfrac is the absorptivity of the cloud weighted by the cloud area fraction (here
for nomcica). The other two terms in the above equation are emission terms. The first of these represents emission
from gases in the area of clear sky and the second represents emission from gases and cloud from the area of cloud.
The equation for the upward longwave flux radlu is very similar: the flux is calculated from the radiative flux from
the layer below and the properties of the layer.

These equations are used with nomcica when the rrtmg_cloud_overlap_method is set to random and the
cloud area fraction is greater than 10-6. These calculations are in the rrtmg_lw_rtrn.f90 file, in the downward
radiative transfer loop and upward radiative transfer loop respectively. These equations are also used with McICA.
In this case, efclfrac is either zero or the non-weighted absorptivity of the cloud and this is allocated randomly
to each waveband, with the number of waveband receiving each depending on the cloud area fraction. For McICA,
these calculations are in the rrtmg_lw_rtrnmc.f90 file, in the downward loop and upward loop respectively.
In both files, in the downward loop there are three different ways of calculating the absorptivity, which use different
approximations for the exponential of the optical depth. The one that is used depends on the optical depth of the clear
sky and of the total sky.

With nomcica, if the rrtmg_cloud_overlap_method is set to any of the other options except random, the
rrtmg_lw_rtrnmr.f90 file is called. Then, the radiative fluxes are calculated as follows, at the end of the down-
ward radiative transfer loop.

cldradd = cldradd * (1._rb - atot(lev)) + cldfrac(lev) * bbdtot * atot(lev)
clrradd = clrradd * (1._rb-atrans(lev)) + (1._rb - cldfrac(lev)) * gassrc
radld = cldradd + clrradd

The downward radiative flux is split into the clear sky and cloudy components, clrradd and cldradd respectively.
Both components contain a transmittance term from the clear or cloudy part, respectively, of the layer above and
an emission term. The emission terms are identical to those described above. The fluxes clrradd and cldradd
are modified by an amount that depends on the change in cloud fraction between layers before they are used for the
calculation of fluxes in the layer below.

9.1.3 Clouds with McICA

A brief description of the different options that can be used in RRTMG with McICA and the input parameters required
in each case.

Cloud properties

There are three options for the RRTMG inflag, as given in the climt dictionary: rrtmg_cloud_props_dict

rrtmg_cloud_props_dict = {
'direct_input': 0,
'single_cloud_type': 1,
'liquid_and_ice_clouds': 2

}

With McICA, we cannot use single_cloud_type, but can choose be-
tween direct_input and liquid_and_ice_clouds. If we choose
direct_input, we input the longwave_optical_thickness_due_to_cloud,
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shortwave_optical_thickness_due_to_cloud, as well as the shortwave parame-
ters single_scattering_albedo_due_to_cloud, cloud_asymmetry_parameter and
cloud_forward_scattering_fraction. The cloud_forward_scattering_fraction is
used to scale the other shortwave parameters (shortwave_optical_thickness_due_to_cloud,
single_scattering_albedo_due_to_cloud and cloud_asymmetry_parameter), but it is not
directly used in the radiative transfer calculations. If the cloud_forward_scattering_fraction is
set to zero, no scaling is applied. The other cloud properties, namely cloud_ice_particle_size and
cloud_water_droplet_radius, mass_content_of_cloud_ice_in_atmosphere_layer, and
mass_content_of_cloud_liquid_water_in_atmosphere_layer are completely unused. The
RRTMG iceflag and liqflag are irrelevant.

On the other hand, if we choose liquid_and_ice_clouds, any input values for
longwave_optical_thickness_due_to_cloud, shortwave_optical_thickness_due_to_cloud,
single_scattering_albedo_due_to_cloud and cloud_asymmetry_parameter are ir-
relevant. Instead, these parameters are calculated from the cloud ice and water droplet parti-
cle sizes (cloud_ice_particle_size and cloud_water_droplet_radius), as well as
the cloud ice and water paths (mass_content_of_cloud_ice_in_atmosphere_layer,
mass_content_of_cloud_liquid_water_in_atmosphere_layer). The methods used for the
calculations depend on the cloud ice and water properties; iceflag and liqflag in RRTMG.

Regardless of the other cloud input type, cloud_area_fraction_in_atmosphere_layer is required, and is
used in McICA to determine how much of the wavelength spectrum sees cloud and how much does not.

Calculation of cloud properties

Longwave

For the longwave, the only cloud property of interest for calculating radiative fluxes in RRTMG, is the optical depth.
This is calculated at the end of the longwave cldprmc submodule as:

taucmc(ig,lay) = ciwpmc(ig,lay) * abscoice(ig) + &
clwpmc(ig,lay) * abscoliq(ig)

Values of cloud optical depth taucmc are calculated for each model layer (pressure), lay, and each g-
interval, ig. The cloud ice and liquid absorption coefficients (abscoice and abscoliq) are mul-
tiplied by the cloud ice and liquid water paths (ciwpmc and clwpmc) respectively, to give the ice
cloud optical depth and the liquid water cloud optical depth. The cloud ice and liquid water paths
are input by the user, in climt as mass_content_of_cloud_ice_in_atmosphere_layer and
mass_content_of_cloud_liquid_water_in_atmosphere_layer respectively. The cloud ice and liq-
uid absorption coefficients are calculated based on the ice and liquid water particle sizes (specified by the user), and
this calculation depends on the choice of iceflag and liqflag.

Shortwave

For the shortwave, there are three cloud properties, which affect the radiative flux calculation in RRTMG, namely the
optical depth, the single scattering albedo and the asymmetry parameter.

The shortwave optical depth is calculated as:

taucmc(ig,lay) = tauice + tauliq

with

9.1. RRTMG - The Rapid Radiative Transfer Model 47

https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_lw/rrtmg_lw_cldprmc.f90#L246-L247


climt Documentation, Release 0.17.12

tauice = (1 - forwice(ig) + ssacoice(ig)) * ciwpmc(ig,lay) * extcoice(ig)
tauliq = (1 - forwliq(ig) + ssacoliq(ig)) * clwpmc(ig,lay) * extcoliq(ig)

The single scattering albedo is calculated as:

ssacmc(ig,lay) = (scatice + scatliq) / taucmc(ig,lay)

with

scatice = ssacoice(ig) * (1._rb - forwice(ig)) / (1._rb - forwice(ig) * ssacoice(ig))
→˓* tauice
scatliq = ssacoliq(ig) * (1._rb - forwliq(ig)) / (1._rb - forwliq(ig) * ssacoliq(ig))
→˓* tauliq

The asymmetry parameter is given by:

asmcmc(ig,lay) = 1.0_rb / (scatliq + scatice) * ( &
scatliq * (gliq(ig) - forwliq(ig)) / (1.0_rb - forwliq(ig)) + &
scatice * (gice(ig) - forwice(ig)) / (1.0_rb - forwice(ig)) )

The original RRTMG code for these calculations is at the end of the shortwave cldprmc submodule.

Values of optical depth, single scattering albedo and asymmetry parameter are calculated for each model layer (pres-
sure), lay, and each g-interval, ig. The cloud ice and liquid water paths (ciwpmc and clwpmc) are input by the user.
The other parameters (extcoice, extcoliq, ssacoice, ssacoliq, gice, gliq, forwice, forwliq) are
calculated based on the ice and liquid water particle sizes and this calculation depends on the choice of iceflag and
liqflag.

Cloud ice properties

There are four options for the RRTMG iceflag. These are given in the climt dictionary:
rrtmg_cloud_ice_props_dict

rrtmg_cloud_ice_props_dict = {
'ebert_curry_one': 0,
'ebert_curry_two': 1,
'key_streamer_manual': 2,
'fu': 3

}

ebert_curry_one

For the longwave, ebert_curry_one gives an absorption coefficient of

abscoice = 0.005 + 1.0 / radice

Here, radice is the ice particle size and the absorption coefficient is the same for all wavebands.

ebert_curry_one should not be used for the shortwave component with McICA.

ebert_curry_two

ebert_curry_two is the default choice for cloud ice optical properties in climt. In this case, the longwave
absorption coefficient is calculated in the lw_cldprmc file as follows.
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abscoice(ig) = absice1(1,ib) + absice1(2,ib)/radice

The absorption coefficient abscoice is a function of g-interval ig and is made up of two contributions. The first
of these absice1(1, ib) comes from a look up table and is given in [m2/ g]. ib provides an index for the look
up table, based on the waveband of the g-interval. absice1(2,ib) also comes from a look up table and is given
in [microns m2/ g]. It is divided by radice, the cloud ice particle size, providing an ice particle size dependence
of the absorption coefficient. Although the syntax does not emphasise it, the absorption coefficient may also depend
on model layer (pressure), as radice can have model layer dependence. radice comes from the input property
labeled cloud_ice_particle_size in climt. The ice particle size dependent term is more important than
the independent term (absice1(2,ib)/radice > absice1(1,ib)) at all wavebands for ice particle sizes less
than 88 microns. Using ebert_curry_two, the ice particle size must be in the range [13, 130] microns, and even
for larger particle sizes (> 88), the ice particle size dependent term is more important than the independent term for
four of the five wavebands.

For the shortwave, the parameters (required for the optical depth, single scattering albedo and asymmetry) are calcu-
lated in the sw_cldprmc file as follows.

extcoice(ig) = abari(icx) + bbari(icx)/radice
ssacoice(ig) = 1._rb - cbari(icx) - dbari(icx) * radice
gice(ig) = ebari(icx) + fbari(icx) * radice
forwice(ig) = gice(ig)*gice(ig)

abari, bbari, cbari, dbari, ebari and fbari are all look up tables, containing five values, which correspond
to five different wavebands. The choice of waveband is indicated by icx. The particle size dependence comes from
radice, so each parameter consists of both a size independent and a size dependent contribution.

key_streamer_manual

In this case, both the longwave absorption coefficient and three of the shortwave parameters (excoice, ssacoice,
gice) are interpolated from look up tables. Comments in the RRTMG code state that these look up tables are for
a spherical ice particle parameterisation. The look up tables contain 42 values for each of the 16 longwave and 14
shortwave wavebands. The 42 values correspond to different ice particle radii, evenly spaced in the range [5, 131]
microns. Ice particles must be within this range, otherwise an error is thrown.

The shortwave parameter forwice is calculated as the square of gice.

fu

The longwave absorption coefficient and shortwave parameters extcoice, ssacoice and gice are interpolated
from look up tables. The look up tables differ to those in key_streamer_manual, and comments in the RRTMG
code state that the look up tables for fu are for a hexagonal ice particle parameterisation. The look up tables for fu
are slightly larger than those for key_streamer_manual, and the range of allowed values for the ice particle size
is corresponding larger ([5, 140] microns).

The shortwave parameter forwice is calculated from fdelta (again taken from look up tables) and ssacoice as
follows.

forwice(ig) = fdelta(ig) + 0.5_rb / ssacoice(ig)

The longwave and shortwave parameter calculations can be found in the longwave cldprmc and shortwave cldprmc
subroutines respectively.
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Fig. 1: The dependence of cloud optical depth taucmc on cloud ice particle size (with an ice water path of 1), with
different lines representing the different wavebands.
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Cloud liquid properties

There are two options for the RRTMG liqflag. These are given in the climt dictionary:
rrtmg_cloud_liquid_props_dict

rrtmg_cloud_liquid_props_dict = {
'radius_independent_absorption': 0,
'radius_dependent_absorption': 1

}

For radius_independent_absorption, the longwave absorption coefficient is 0.0903614 for all wavebands.
This option should not be used for the shortwave.

radius_dependent_absorption is the default choice for cloud liquid water properties in climt. In this
case, the longwave absorption coefficient and the shortwave parameters extcoliq, ssacoliq, and gliq are
interpolated from look up tables. The look up tables have values for particle sizes in the range [2.5, 59.5] microns in
1 micron intervals (58 values) for each of the 16 longwave and 14 shortwave wavebands. The shortwave parameter
forwliq is calculated as the square of gliq.

Fig. 2: The dependence of cloud optical depth taucmc on cloud liquid water particle size (with a liquid water path
of 1), with different lines representing the different wavebands.
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Cloud overlap method

This is the RRTMG icld and is given in the climt dictionary: rrtmg_cloud_overlap_method_dict

rrtmg_cloud_overlap_method_dict = {
'clear_only': 0,
'random': 1,
'maximum_random': 2,
'maximum': 3

}

If we choose clear_only, there are no clouds, regardless of the other input. If we choose random, the g-intervals
which see cloud are chosen randomly for each model layer. This means that there is a dependence on vertical reso-
lution: if vertical resolution is increased, more layers contain the same cloud and a larger portion of the wavelength
spectrum sees some of the cloud. With maximum_random, the g-intervals that see cloud in one model layer are the
same as those that see cloud in a neighbouring model layer. This maximises the cloud overlap between neighbouring
layers (within a single cloud). If the cloud area fraction changes between layers, the additional g-intervals that see (or
don’t see) cloud are assigned randomly. Therefore, if there are two clouds at different altitudes, separated by clear sky,
the two clouds overlap randomly with respect to each other. If maximum is selected, cloud overlap is maximised both
within and between clouds.

The implementation is in the mcica_subcol_gen_sw and mcica_subcol_gen_lw files, and consists firstly of assign-
ing each g-interval a random number in the range [0, 1]. For random, and maximum_random (cases 1 and 2
in mcica_subcol_gen_sw and mcica_subcol_gen_lw), random numbers are generated for each layer, whereas for
maximum (case 3) only one set of random numbers is generated and applied to all the layers. For maximum_random,
the random numbers are recalculated to fulfill the assumption about overlap (this recalculation is described below).
Whether a g-interval at a certain layer sees cloud depends on both the random number it has been assigned and the
cloud fraction at that layer. For example, if the cloud area fraction is 30%, all g-intervals that have been assigned a
random number > 0.7 (approximately 30% of the g-intervals) will see cloud. The other g-intervals will see clear-sky.
If the cloud fraction is 20%, only g-intervals with a random number > 0.8 will see cloud. The recalculation of random
numbers in the maximum_random case for a certain model layer (layer 2), considers the assigned random numbers
and cloud area fraction of the layer above (layer 1). If the g-interval sees cloud in layer 1, its random number in layer
2 is changed so that it matches that in layer 1. This does not necessarily mean that it will see cloud in layer 2, because
the cloud fraction could be smaller in layer 2 than layer 1 (so the requirement for seeing cloud would be increased).
The random numbers for the g-intervals in layer 2, which do not see cloud in layer 1, are multiplied by one minus the
cloud area fraction of layer 1, so that the set of random numbers assigned to layer 2 are still randomly distributed in
the range [0, 1]. This is required so that the right proportion of g-intervals in layer 2 see cloud.

9.1.4 Differences in cloud input with nomcica

Regarding the options that can be used with nomcica, there are a few differences to those that can be used with McICA.

Cloud properties

For the longwave, we can choose single_cloud_type in the rrtmg_cloud_props_dict. The longwave cloud opti-
cal depth is calculated as follows.

taucloud(lay,ib) = abscld1 * (ciwp(lay) + clwp(lay))

This gives us a cloud optical depth based on a single constant value, abscld1 and the total cloud wa-
ter path. Thus, for this option, the mass_content_of_cloud_ice_in_atmosphere_layer,
and mass_content_of_cloud_liquid_water_in_atmosphere_layer are needed as input.
single_cloud_type is not available for the shortwave.
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If we choose liquid_and_ice_clouds, the calculations of the longwave and shortwave optical properties from
the cloud mass and particle sizes are the same as for McICA, but are calculated for each waveband instead of each
g-interval.

Cloud overlap method

With nomcica choosing a cloud overlap of random in the rrtmg_cloud_overlap_method_dict is different to choos-
ing either maximum_random or maximum. The latter two options do not differ. If we choose random, the ra-
diative flux transmitted from one layer to the next does not care if it came from cloud or clear sky, whereas with
maximum_random, the cloudy and clear fluxes are separated and treated separately from one model layer to the
next.
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CHAPTER 10

Initialisation

get_default_state(component_list[, . . . ]) Retrieves a reasonable initial state for the set of compo-
nents given.

get_grid([nx, ny, nz, . . . ])
param nx int, optional

10.1 climt.get_default_state

climt.get_default_state(component_list, grid_state=None, n_ice_interface_levels=30)
Retrieves a reasonable initial state for the set of components given.

Parameters

• component_list (list) – Components for which to retrieve an initial state.

• grid_state (dict, optional) – An initial state containing grid quantities. If
none is given, a default will be created.

• n_ice_interface_levels (int, optional) – Number of vertical interface
levels to use for ice. Use None to disable the ice vertical grid.

Returns A reasonable initial state.

Return type default_state (dict)

10.2 climt.get_grid

climt.get_grid(nx=None, ny=None, nz=28, n_ice_interface_levels=10, p_surf_in_Pa=None,
p_toa_in_Pa=None, proportion_sigma_levels=0.1, proportion_isobaric_levels=0.25,
x_name=’lon’, y_name=’lat’, latitude_grid=’gaussian’)

Parameters
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• nx – int, optional Number of longitudinal points.

• ny – int, optional Number of latitudinal points.

• nz – int, optional Number of vertical mid levels.

• n_ice_interface_levels (int, optional) – Number of vertical interface
levels to use for ice. Use None to disable the ice vertical grid.

• p_surf_in_Pa – float, optional Surface pressure in Pa.

• x_name – str, optional Name of latitudinal dimension

• y_name – str, optional Name of longitudinal dimension

• latitude_grid – ‘gaussian’ or ‘regular’ Type of spacing to use for the latitudinal
grid.

Returns

dict A model state containing grid quantities.

Return type grid_state
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CHAPTER 11

General Utilities

This documents some utility functions available in climt. Most of the constants functionality is inherited from
sympl.

11.1 Constants

list_available_constants() Prints all the constants currently registered with sympl.
set_constants_from_dict(constant_descriptions) Modify/Add constants in the library.

11.1.1 climt.list_available_constants

climt.list_available_constants()
Prints all the constants currently registered with sympl.

11.1.2 climt.set_constants_from_dict

climt.set_constants_from_dict(constant_descriptions)
Modify/Add constants in the library.

Parameters constant_descriptions (dict) – Dictionary containing the description of the
constants. The key should be the name of the constant, and the value should be a dictionary
containing the following keys:

• value (float): The value assigned.

• units (string): The units of the value, e.g, m/s, J/kg.

11.2 Miscellaneous
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mass_to_volume_mixing_ratio(mass_mixing_ratio)g/g or g/kg to mole/mole
get_interface_values(mid_level_values, . . . ) Calculate interface values given mid-level values.

11.2.1 climt.mass_to_volume_mixing_ratio

climt.mass_to_volume_mixing_ratio(mass_mixing_ratio, molecular_weight=None, molecu-
lar_weight_air=28.964)

g/g or g/kg to mole/mole

Converts from mass mixing ratio (mass per unit mass) to volume mixing ratio (volume per unit volume)

Parameters

• mass_mixing_ratio (array) – The quantity to be transformed in units of 𝑔/𝑔.

• molecular_weight (float) – The molecular weight of the gas in 𝑔/𝑚𝑜𝑙.

• molecular_weight_air (float,optional) – The molecular weight of dry air.
If it is not provided, the value for dry air on earth (28.964 g/mol) is used.

Returns The volume mixing ratio of the gas.

Return type volume_mixing_ratio (array)

Raises ValueError – if the molecular weight is not provided.

11.2.2 climt.get_interface_values

climt.get_interface_values(mid_level_values, surface_value, mid_level_pressure, inter-
face_level_pressure)

Calculate interface values given mid-level values.

Given 3D values of a quantity on model mid levels (cell centers) and the 2D surface value, return the 3D values
of that quantity on model full levels (cell interfaces). If the vertical dimension of mid_level_values is
length K, the returned array will have a vertical dimension of length K+1.

Routine borrowed from CESM (radiation.F90 in rrtmg folder)

Parameters

• mid_level_values (array) – The values of the quantity on mid-levels.

• surface_value (array) – The value of the quantity at the surface. Must be in the
same units as mid_level_values

• mid_level_pressure (array) – Pressure values on mid-levels. Can be in any
units.

• interface_level_pressure (array) – Pressure values on interface levels. Must
be in in the same units as mid_level_pressure.

Returns values of the quantity on mid-levels.

Return type interface_values (array)
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CHAPTER 12

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

12.1 Types of Contributions

12.1.1 Usage in Publications

If you use CliMT to perform research, your publication is a valuable resource for others looking to learn the ways they
can leverage CliMT’s capabilities. If you have used CliMT in a publication, please let us know so we can add it to the
list.

12.1.2 Presenting CliMT to Others

CliMT is meant to be an accessible, community-driven model. You can help the community of users grow and be
more effective in many ways, such as:

• Running a workshop

• Offering to be a resource for others to ask questions

• Presenting research that uses CliMT

If you or someone you know is contributing to the CliMT community by presenting it or assisting others with the
model, please let us know so we can add that person to the contributors list.

12.1.3 Report Bugs

Report bugs at https://github.com/CliMT/climt/issues.

If you are reporting a bug, please include:
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• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

12.1.4 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

12.1.5 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

12.1.6 Write Documentation

CliMT could always use more documentation. You could:

• Clean up or add to the official CliMT docs and docstrings.

• Write useful and clear examples that are missing from the examples folder.

• Create a Jupyter notebook that uses CliMT and share it with others.

• Prepare reproducible model scripts to distribute with a paper using CliMT.

• Anything else that communicates useful information about CliMT.

12.1.7 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/CliMT/climt/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

12.2 Get Started!

Ready to contribute? Here’s how to set up climt for local development.

1. Fork the climt repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/climt.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:
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$ mkvirtualenv climt
$ cd climt/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 climt tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4 and 3.5. Check https://travis-ci.org/CliMT/climt/pull_requests
and make sure that the tests pass for all supported Python versions.

12.4 Style

In the CliMT code, we follow PEP 8 style guidelines (tested by flake8). You can test style by running “tox -e flake8”
from the root directory of the repository. There are some exceptions to PEP 8:

• All lines should be shorter than 80 characters. However, lines longer than this are permissible if this increases
readability (particularly for lines representing complicated equations).

• Space should be assigned around arithmetic operators in a way that maximizes readability. For some cases,
this may mean not including whitespace around certain operations to make the separation of terms clearer, e.g.
“Cp*T + g*z + Lv*q”.

• While state dictionary keys are full and verbose, within components they may be assigned to shorter names if it
makes the code clearer.

• We can take advantage of known scientific abbreviations for quantities within components (e.g. “T” for
“air_temperature”) even thought they do not follow pothole_case.
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12.5 Tips

To run a subset of tests:

$ py.test tests.test_timestepping
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CHAPTER 14

History

14.1 v.0.17.0

• Removed dycore to move it to independent package

14.2 v.0.16.15

• Move to Github Actions tentatively finished!

14.3 v.0.16.11

• New component BucketHydrology that implements Manabe first generation land model

• BucketHydrology calculates the sensible and latent heat flux within the component

• Conservation test for the component also added

• Moving CI to Github Actions

14.4 v.0.16.8

• Fix timeout for all MAC builds

14.5 v.0.16.6

• Prevent MAC OS builds from timing out
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14.6 v.0.16.5

• Fix formatting errors which prevent pypi deployment

14.7 v.0.16.4

• Fix MCICA for the shortwave component of RRTMG

• Revise random number generation for MCICA

• Improvement of the user interface to control MCICA

14.8 v.0.16.3

• update numpy requirement to avoid binary incompatibility error

• Fix error in documentation

14.9 v.0.16.2

• Fix wheel build on Mac

14.10 v.0.16.1

• Fixed issue with Mac build

• Few changes in the dry convection component. Significantly improves the performance.

• Changed logo!

• Fixed failing docs build

14.11 v0.16.0

• Added some documentation for using RRTMG with McICA

• CI Testing for Mac and py37 added.

• Refactored initialisation code

• Enable the McICA version of RRTMG Longwave for consistency with the Shortwave component.

• Fix bugs in IceSheet

• Add tests to verify conservation of quantities

• Fix bugs in initialisation

• Fix energy conservation in surface flux scheme

• Enable the McICA version of RRTMG Shortwave, so that partial cloud fractions can be used.
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• Add GMD example scripts to repository.

• Fix docs to reflect API changes after refactor.

• Fix wrong initialisation to use sigma values instead of pressure values of optical depth for GrayLongwaveRadi-
ation

14.12 Breaking Changes

• The flux outputs of GrayLongwaveRadiation have been renamed to eliminate on_interface_levels to keep con-
sistency with other components.

• All arrays are now 3/2d by default based on their expected dimensions.

• horizontal dimensions are now lon, lat, but inputs used by components remain the same (latitude, longitude).

14.13 v.0.14.8

Many of the changes in this version come from changes in Sympl 0.4.0. We recommend reading those changes in the
Sympl documentation.

• Updated component APIs to work with Sympl 0.4.0

• Many components which previously required horizontal dimensions now use wildcard matches for column
dimensions.

• Switched many print statements to logging calls.

• Fixed bugs in some components

14.14 Breaking Changes

• get_constant and set_constant have been removed, use the ones in Sympl.

• Emanuel convection scheme can no longer be set to perform dry adiabatic adjustment to the boundary layer.
This has been implemented in a separate component.

• ClimtPrognostic, ClimtImplicitPrognostic, ClimtDiagnostic, ClimtImplicit have been removed. Use the base
types in Sympl.

• State initialization has been entirely re-worked. get_default_state now takes in an optional grid state instead of
options to do with the state grid. A function get_grid is provided which can create a grid state, or one can be
created manually. A grid state is a state containing air pressure and sigma on mid and interface levels, as well
as surface pressure.

• Replaced references to “thermal_capacity” with references to “heat_capacity” in component quantity names.

14.15 v.0.14.7

• Fix issue with pip v10 and pandas 0.22 conflicts
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14.16 v.0.14.3

• Fix release issue because of pip API change

14.17 v.0.14.1

• Fix appveyor fail due to pip changes

14.18 v.0.14.0

• Fixed broken version numbers

14.19 v.0.12.0

• new release to fix version numbers and create zenodo ID

14.20 v.0.9.4

• Added attributes to inputs/outputs/ etc., to work with ScalingWrapper Added tests as well.

• Added tests for constants functions

• Fixed requirements to ensure this version of climt installs the correct versions of sympl and numpy.

14.21 v.0.9.3

• Released because of a labelling issue. See 0.9.2 for details.

14.22 v.0.9.2

• Updated documentation

• Cleaned up examples

• Added (*)_properties as a property to all components

• The gas constant for dry air in the Emanuel scheme is now renamed _Rdair

• RRTMG LW and SW are now OpenMP parallel

• Added Instellation component to calculate zenith angle

• Added tests to increase coverage

• New constants handling functionality added

• Travis builds now use stages

• Appveyor CI up and running
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• Pre-installation of cython and numpy no longer necessary for source builds

• Added snow-ice component

• Ozone profiles do not need to be specified externally

• Now also tested on Python 3.6

14.23 Breaking Changes

• API for constants setting changed to set_constant_from_dict and add_constants_from_dict

• GfsDynamicalCore renamed to GFSDynamicalCore for consistency

• get_prognostic_version method of ClimtImplicit renamed to prognostic_version, and no longer accepts timestep
as an argument. The current timestep should be set in ClimtImplicit.current_time_step during each iteration.

• RRTMGShortwave now uses sympl’s solar constant by default instead of from fortran.

14.24 v.0.9.1

• Held-Suarez and moist GCM with grey radiation work!

• Added DCMIP initial conditions, test 4 tried out.

• Dynamical core integrated now.

• BIG change in the build system. Tests pass on Mac as well

• Arrays can now have arbitrary dtype (to use qualitative, string, quantities)

• Added Emanuel Convection, surface energy balance model and ice sheet energy balance

• 2D coordinates are now supported for horizontal coordinates

• Replaced create_output_arrays() with a more general get_state_dict_for() and get_numpy_arrays_from_state()
combination.

• State arrays now have coordinates

• Updated documentation

• RTD finally working, phew!

• Added RRTMG Longwave, Simple Physics

• Added helper functions to reduce boilerplate code in components

14.25 Breaking Changes

14.26 Latest

• method to obtain piecewise constant prognostic has been renamed to piecewise_constant_version

• Ozone profile has been modified

• Heating rate for RRTMG top-of-atmosphere is no longer manually set to zero

• Components no longer accept constants during initialisation. All constant handling is done internally.
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14.27 v.0.9

• SlabSurface no longer uses depth_slab_surface as input

• changed order of outputs of GfsDynamicalCore and SimplePhysics to conform to TimeStepper order of diag-
nostics, new_state

• get_default_state now accepts mid_levels and interface_levels instead of z to specify vertical coordinates.

• mass_to_volume_mixing_ratio now uses numpy arrays instead of DataArrays.
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Indices and tables

• genindex

• modindex

• search
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